Homework #5

Option#2, Object Tracking

CS 181B

Winter 2009

Tim Wood

Ryan McGee

Problem Definition

Use OpenCV to write a program to track an object of fixed color and shape in 2D throughout a video sequence. The program will output the row and column location of the centroid of the object for each frame and produce a plot of this information. Additionally, the program will display a dot at the centroid location for each frame.

Approaches Considered

Our basic idea was to take user input on the initial frame of the video sequence to locate the object to be tracked. Then we planned to use OpenCV functions to segregate the region of interest according to color and shape. Using the region of interest’s location from each previous frame we could track the object by detecting color similarities in the surrounding area. To determine the appropriate OpenCV functions to use, we planned to reference to the OpenCV manual’s Object Tracking section.

Another approach briefly discussed was to use the concept of Optical Flow to determine the displacement of the object in a scene. However, this method would require global rather than local computations on the image and therefore would be more demanding computationally.

Approach Implemented

After reviewing the OpenCV documentation, we found the cvCamShift function that provided the starting point for implementing our approach. The CamShift function calculates an object’s centroid, size, and orientation and requires an initial search window along with a color probability distribution as inputs. We used OpenCV’s GUI functions and created a mouse callback function to input the initial search window to CamShift. The cvCalcBackProject function creates a probability distribution usable in CamShift. We convert each frame to HSV format as suggested in the OpenCV reference manual before calculating its probability distribution using the cvCalcBackProject function. This allows us to look at color independently of the other scene features such as brightness.

We created a C++ object (ObjectTracker) to house our OpenCV object tracking implementation using CamShift. This object holds all necessary data structures and functions including a track function that is called for each frame of the video sequence. The track function returns a CVBox2D object which is used to represent the tracked object's position and orientation.

Program Flow

[image: image1.png]User Input Input Image
Search Window

Convert to HSV

Threshold for Saturation
Hue

Histogram

ObjectTracker

CalcBackProject

Search Window—> CamShift

Centroid Coordinates

Our ObjectTracker uses an initial user input search window along with the input image from each frame of the video sequence. The search window is then updated to reflect the current location with each iteration of the tracker (once for each frame of video). Within the ObjectTracker, the image is converted to HSV format (cvColorConvert). We apply a saturation threshold to create a masking image representing values in the appropriate saturation intensity range (cvInRangeS). When ObjectTracker is initialized, a histogram of hue values is created from the initial search window. The hue histogram represents the color distribution of the object to be tracked and is needed for CalcBackProject (cvCalcBackProject). CalcBackProject computes the 2D object's probabilty distribution using the hue image along with its histogram. CamShift can then compute the center coordinates of the 2D object as well as the object's size and orientation.

Results

Our program provides real-time tracking of objects. Below is a breakdown of the total timing percent for each OpenCV function (using Xcode's Shark utility).

[image: image2.png]Total ISR, <y bol

26.7% OpenCV. ¥ IcVBGRX2HSV_8u_CnC3R(unsigned char const*, int, unsigned char®, int, CSize, int, in)
26.7% Opencv. » cvCviColor
8.9% Opencv. ¥ icvinRangeC_8u_C3R(unsigned char const?, int, unsigned char®,int, CuSize, int const?)
8.8% Opencv. » cvinRanges
0.0% dyid » dyidPool
7.5% Opencv. ¥ icvCvt_BGR2RG_8u_C3R(unsigned char consts, int, unsigned char*, int, CvSize)
7.5% Opencv. » cvConvertimage
6.3% Opencv. ¥ IcVBGRX2BGR_8u_CnC3R(unsigned char const*,int, unsigned char-, int, CusSize, int, int)
6.3% Opencv. » cvCviColor
2.2% Opencv b icuLineAA(CYMat*, CvPoint, CvPoint, void const?)
2.0% Opencv. b icvMomentsinTile_8u_CnCR(unsigned char const*, int, CSize, int, int, double®)
1.9% Opencv b ievCalcBackProject_8u_CIR(unsigned char™*, int, unsigned char*, int, CvSize, CvHistogram const*)
16% Opencv b icvCopy_8u_CnCICR f(unsigned char const®, int, unsigned char*, nt, CvSize, int, int)
0.7% Opencv. b icvAnd_8u_CIR f(unsigned char const*, int, unsigned char const*, int, unsigned char-, int, CSize)
0.6% Opencv. b icvFiliConvexPoly(CuMat*, CvPoints, int, void consts, int, int)
0.1% Opencv. » cvcliptine
0.1% Opencv. » cvFloor(double)
0.0% Opencv b icvCalchistLookupTables8x(CvHistogram const, int, int, int,int*, int®)
0.0% Opencv. » cvMoments
0.0% Opencv » cGervat
0.0% Opencv. b icvThickLine(CvMat*, CvPoint, CvPoint, void const?, int, int, nt, int)
0.0% Opencv b icvSetZero_8u_CIR(unsigned char*, int, CySize)
0.0% Opencv. > icvLogicivoid const”, void const*, void®, void const*, Cvstatus (*)void®, int, void*, int, void*, int, Cvsize))
0.0% Opencv b icvillipseEx(CuMat?, CvPoint, Cysize, nt, int, int, void const*, int, int)
0.0% Opencv. > icvCircle(CyMat*, CvPoint, nt, void const*, int)
0.0% Opencv b icvAnd_8u_CIR(unsigned char const*, int, unsigned char const*, int, unsigned char-, int, CuSize)
0.0% Opencv. » cvinitMatteader
0.0% Opencv » vGetMatsize(CuMat const”)
0.0% Opencv. » cGetErrstatus
0.0% Opencv » cvellipse2poly
0.0% Opencv. » cvCamshift

0.0% OpenCV » cvCalcArrBackProject

As you can see, converting images to HSV format using cvCvtColor is the most time intensive operation. It is interesting to note that cvCamShift takes relatively no time to compute compared to the functions required for its use.

Sample Output of Our Program:

[image: image3.png]

Limitations and False Detections

Our program works well on 3 of the 4 provided sample videos. However, on Yellow1.wmv, we obtain several false detections for the centroid and size of the object. However, Yellow2.wmv, which contains the same object in a similar scene does not have any false detections and tracks rather well. Both Blue1.wmv and Blue2.wmv (shown in screen shot above) track very accurately.

Additionally, we made our own video consisting of a yellow object (toy chicken) on a purely white background. Our goal with this video was to test the speed of motion limits for the object. We were able to track the object in real-time even with violent shaking and brisk movements of the object across the scene. When replacing the white background with a computer lab scene, the object was much more difficult to track at high speeds. This difficulty in tracking is most likely due to poor lighting conditions and similarities of colors in the background to the color of our object. Thus, we believe that complex backgrounds and poor lighting (which can decrease contrast) are the main limitations of our program.

[image: image4.png]

Above: Our test video with moderate motion, Below: High speed motion tracking

[image: image5.jpg]

Notes on System Compatibility

We have successfully compiled our program on Windows, OS X, and Linux platforms. However, we are unable to run our program on the Linux machines in the CSIL lab because they are missing required video codes. Even the uncompressed sample AVI's will not load in OpenCV, nor play in a standalone player on the CSIL computers. We are able to load videos and successfully run our program on OS X and Windows machines. (An email was sent to the TA on 3/11/2009 regarding this issue.)

